# Azure Best Practices and Configuration Notes

Bill Deitrick, BEMA Software Services - RX 2023

### **SQL** on Azure

### **Hosting Models**

- 1. <u>SQL Server on Azure Virtual Machines</u>
  - 1. Infrastructure-as-a-Service (laaS)
- 2. SQL Server Managed Instances
  - 1. Platform-as-a-Service (PaaS)
- 3. Azure SQL Database (preferred for Rock)
  - 1. Database-as-a-Service (Daas)
    - 1. Azure SQL Database is simplest to operate and typically the most costeffective option
  - 2. Significant benefit of the managed service: <u>Fully automated, managed backups</u> (with Point-in-time Recovery included up to 35 days retention with DTU).
  - Rock is designed for compatibility with Azure SQL database, but there are some differences to keep in mind if coming from on-prem or one of the other hosting models in Azure.
    - Three-part names only work if referencing the executing database; all queries with four-part names will fail in Azure SQL
    - 2. Cross-database queries are possible but work differently in Azure SQL
    - 3. Azure SQL servers always use UTC; make sure your queries explicitly set the time zone if using GETDATE() or similar
    - 4. There is no SQL Server Agent in Azure SQL; use Rock jobs or other Azure-native methods

### **Azure SQL Purchasing Models**

- 1. There are two different purchasing models for Azure SQL. These represent the same service and are mostly functionally equivalent; the difference is how you you're paying for the service.
- 2. DTU Model
  - 1. <u>"Database Transaction Unit" (DTU):</u> A synthetic metric representing a blend of compute, memory, IO, and storage capacity.
  - 2. Storage can be increased in certain increments if needed.
  - 3. Tends to be the simplest to configure, manage, and operate.
  - 4. Cost-effective for most Rock workloads, offers the most predictable cost month-to-month (Point-in-Time backups included with up to 35 days retention for most tiers).
- 3. <u>vCore Model</u>



- 1. Newer alternative to the DTU model; compute/memory/IO purchased independently of storage capacity
- 2. Greater flexibility than DTU, can tune more closely to specific workloads
- 3. Additional architectural options (Serverless, Hyperscale)
- 4. Offers Reserved Capacity and Hybrid Benefit
  - 1. Reserved Capacity: make a 1 or 3-year purchasing commitment to save up to 70% on compute.
  - 2. <u>Hybrid Benefit</u>: save on SQL licensing portion of cost by bringing licenses you already own, covered by Software Assurance, to Azure.
- 4. Choosing DTU or vCore
  - 1. DTU is appropriate for most churches
    - 1. DTU offers the most predictable monthly cost (point-in-time recovery backup storage included)
    - 2. DTU is simpler to configure and manage
    - 3. Reserved Capacity isn't available when using <u>Sponsorship credits</u>; most churches see greater savings using Sponsorship credits than Reserved Capacity.
  - Reach for vCore when additional flexibility is needed or offers cost optimization over the DTU model

### **Azure SQL Performance Tiers**

- 1. Azure SQL Database offers <u>two different performance tiers</u> Standard (DTU Model)/General Purpose (vCore Model) and Premium (DTU Model)/Business Critical (vCore Model)
  - 1. While the terminology is different, the two tiers are architecturally similar between DTU and vCore
- 2. Standard/General Purpose Tier
  - 1. Used by most churches for Rock workloads.
  - 2. Storage and compute are remote within the Azure datacenter; this translates to less IO potential than Premium/Business Critical.
  - Lower cost than Premium/Business Critical
- 3. Premium/Business Critical Tier
  - 1. The largest churches with the busiest Rock environments should consider Premium tier/Business Critical
  - 2. Storage is all-flash, local to compute for superior IO performance
  - 3. Read-only replicas provide redundancy and read scale-out for Rock read-only contexts
  - 4. Higher cost than Standard/General Purpose Tier
- 4. When to choose Premium/Business Critical over Standard/General Purpose
  - 1. IO limits are being hit on Standard tier
  - 2. Operations against objects with large numbers of records (such as emails to 10s of thousands of recipients) are causing database timeouts, even on higher levels of the Standard tier

- 1. Consider time-based automatic scaling between tiers if the workload is predictable to decrease cost
- 3. Dataviews, reports, and pledge analytics are performing poorly or affecting performance of the rest of Rock

### **Disaster Recovery for Azure SQL Database**

- 1. All Azure SQL databases have <u>automatic</u>, <u>platform-managed point-in-time backups</u> enabled by default
  - Especially if running DTU model, consider increasing retention from the default 7 days to the max 35 days (the full 35 days is included with the cost for DTU, but there is a per-GB cost for vCore)
- 2. Ensure Geo-replication is enabled
  - Geo-replication copies point-in-time backups to a paired region with a Recovery Point Objective (RPO) of 1 hour
- 3. Consider enabling Long-term Retention (LTR) backups for longer-term data retention
  - 1. If within the retention period, these can be restored even if the whole server object is deleted.
- 4. Perform test restores, and be familiar with the recovery tools and process in case you need them!

### **Azure SQL Firewall Configuration**

- 1. Avoid the "Allow All Azure Access" option for SQL Server firewall settings.
  - 1. This grants access to other Azure subscriptions, not just your own!
  - We want to explicitly allow VNETs, hosts, or other Microsoft services that should be able to connect.
    - 1. For supported Microsoft cloud services, such as PowerBI, deploy On-Prem Data Gateway to provide SQL access.
- 2. Utilize Service Endpoints or Private Link to connect the web server to Azure SQL
  - Deployed to the subnet hosting your Rock server in your Azure VNET, both of these services will permit access to your database from any resource deployed in the subnet.
  - 2. Service Endpoints provide secure, optimized connectivity to Azure SQL's public endpoints.
    - 1. These are simpler to deploy and recommended unless there is a specific need for Private Link functionality.
  - 3. Private Link creates a private endpoint for Azure SQL within your VNET.
    - 1. This service does have a nominal cost and is more complex to deploy than Service Endpoints
    - 2. Private Link offers additional functionality since the Azure SQL service is given a local endpoint in your VNET.
  - 4. Start with Service Endpoints, and deploy Private Link if the additional functionality offered by Private Link is required.

### **Additional Azure SQL Recommendations**

- 1. Deploy a <u>Delete Lock</u> on the production database
  - 1. If a production *server* is deleted and no LTR backups have been configured for a particular database, there is not a straightforward path to recovering the database.
  - 2. Delete Locks prevent any delete actions agains the Azure Rest APIs, and guard your production database from accidental deletion of the database's server resource.
- 2. Enable Azure AD Database Authentication
  - 1. Enable Azure AD Authentication to provide Azure AD single sign-on for administrative and developer access to your database at the SQL level.
    - 1. This provides for centrally controlled access rather than a shared database password or individual passwords maintained at the database level.
  - 2. Be sure to enable *both* database accounts and Azure AD accounts to that Rock can still connect.
- 3. Enable Microsoft Defender for SQL
  - 1. Microsoft Defender is Microsoft's suite of enhanced security tools for Azure, including a SQL-specific option.
  - 2. This service is highly affordable at \$15 per server per month.
  - 3. Defender for SQL scans for vulnerabilities and detects attacks like SQL injection.
- 4. Premium Tier Recommendations
  - 1. If deploying Premium or Business Critical SQL performance tiers, make sure you are fully leveraging the capabilities of that tier:
    - 1. Ensure the database is configured for **Zone Redundancy**; SLA increases from 99.99% to 99.995%
    - 2. Leverage the <u>read-only replicas in your Rock configuration</u>

# **Compute in Azure**

#### VM SKU Recommendations

- 1. Recommended VM SKUs for Rock are B-series, Fsv2, or Dasv5 SKUs
  - 1. For the same number of cores, B-series is the least costly, followed by Fsv2 and then Dasv5 VMs
- 2. B Series (Burstable) VMs
  - 1. Usually the preferred option for Rock, suitable for all but the busiest Rock environments
  - 2. Do not have the full power of the CPU available all the time
  - 3. During periods of low utilization, <u>credits are accumulated to "burst" to full CPU</u> performance
    - 1. When burst credits are exhausted, performance is throttled
  - 4. Other Constraints
    - 1. Less disk throughput than other VM SKUs; this typically isn't an issue for Rock workloads

- 2. Less bandwidth than similar F or D-series SKUs, this also typically isn't an issue for Rock workloads.
- 5. B-Series VMs offer significant savings compared to other SKUs, particularly on Windows licensing
- 6. Rock workloads tend to be bursty, not needing full CPU performance all the time (assuming a VM is sized appropriately)
- 7. Start here for Rock workloads, and move to another VM series if needed.
- 3. Fsv2 (Compute Optimized) VMs
  - 1. Able to access full CPU performance at all times
  - 2. Higher CPU to memory ratio than other SKUs; most demanding Rock environments will hit CPU limitations before memory
  - 3. Constraints:
    - 1. If more memory is needed, another SKU (D-Series) with more a more balanced memory to CPU ratio may be needed
- 4. <u>Dasv5 (General Purpose, AMD)</u>
  - 1. Able to access full CPU performance at all times
  - 2. Higher memory to CPU ratio compare to F-series
  - 3. Consider if F-series does not provide sufficient memory

### VM Configuration and Management Recommendations

- 1. Disk Layout and Configuration
  - Configure Premium SSDs in for a 99.9% uptime SLA for the VM (standard SSDs offer a 99.5% SLA)
  - 2. Put Rock application files on a dedicated data disk rather than the OS disk (C Drive)
    - 1. This allows operations on the Rock data only at the block/management plane level.
    - 2. Moving wwwroot to an alternate location is straightforward in IIS manager
- 2. Patching
  - 1. Install Windows patches on a monthly cadence
  - 2. Configure automatic update management using one of the two Azure services:
    - 1. Update Management in Azure Automation
      - 1. This is the older solution (no longer in development), does not support Windows Server 2022
    - 2. Azure Update Management
      - 1. This is the new solution, currently in preview, but is currently under active development and receiving new features
- 3. Authentication
  - 1. Avoid domain-joining Rock application servers in Azure if possible
  - 2. Deploy the AAD Authentication extension to facilitate centrally-managed administrative authentication on the Rock Server
- 4. Consider Cost Optimizations: Hybrid Benefit and Reserved Instances or Savings Plans
  - 1. Hybrid Benefit

- 1. Use existing licenses (with current Software Assurance) to cover the licensing cost of Windows on Azure VMs
- 2. This typically isn't worth exploring for B-series VMs because Windows licensing costs are significantly reduced for these VMs, but may be worth exploring for F or D-series
- 2. Reserved Instances/Savings Plans
  - 1. Reserved Instances
    - 1. Commitment to purchase a a specific family of VM SKUs in a specific region for 1 or 3 years
    - 2. Up to approximately 70% savings over pay-as-you-go costs for Compute
  - 2. Savings Plan
    - 1. More flexible than reserved instances, but less compute savings
    - 2. Commitment to a certain spending level for Azure VMs for 1 or 3 years
- 3. Reserved Instances and Savings Plans cannot be purchased on a subscription using Azure sponsorship benefits
- 5. Manage CPU Quota
  - 1. Ensure extra CPU quota is available if needed; this allows scaling up when there is an unexpected increase in traffic

## **Disaster Recovery for Virtual Machines**

- 1. Utilize an Azure Recovery Services Vault to back up your Rock VM
  - 1. Ensure your vault is configured for geo-redundancy (the default configuration)
  - 2. Configure an appropriate schedule and retention policy if something other than the defaults (nightly backup, 30-day retention) is desired
  - 3. Test restoring data to ensure familiarity with the tool!

# **Networking**

- 1. Deploy or <u>migrate</u> to <u>Standard SKU Public IP Addresses</u> (Basic Public IP Addresses will be retired in 2025)
- 2. Deploy Network Security Groups at the firewall level
- 3. Deploy IP address ranges in your VNETs and subnets compatible with your existing IP space in case VPN connectivity is required
- 4. Avoid VPNs if at all possible
  - 1. VPNs add expense, complexity, and additional points of failure
  - 2. Keeping Rock isolated from on-prem creates a natural security boundary

# **Monitoring and Alerting**

#### **Azure Monitor**

1. Azure Monitor is the native metrics, logging, and alerting tool provided by Microsoft



#### **Azure Monitor Metrics**

- 1. Azure Monitor collects performance metrics for all resources in a time-series database
  - 1. Metrics are retained for 90 days by default
  - 2. Different resource types will have different metrics available
- 2. <u>Metrics</u> are available in the configuration blade for each resource; use <u>Dashboards</u> to create a single-pane-of-glass for metrics from multiple resources
  - 1. Get started with the **BEMA** template

#### **Azure Monitor Alerts**

- Azure Monitor Alerts provide notification functionality based on Azure Monitor Metrics and Logs
- 2. Alert Rules define notification conditions
- 3. Action Groups control the destination of alerts
- 4. <u>Alert Processing Rules</u> allow alert scheduling (i.e., turning off alerts for SQL when overnight maintenance jobs run)

# **Development Environments**

### **Development Environment Recommendations**

- 1. Most churches should have a development environment for testing upgrades and exploring new features
- 2. Development environments should be:
  - 1. Fully separated from production
    - 1. Development environments can run on the same VMs and SQL servers as production, but this is not the ideal configuration.
    - 2. Full separation/completely independent environments for VMs ensures that actions taken in the development environment will not affect production, and avoid mistakes such as accidentally connecting development to the production database
  - 2. Scaled down from production
    - Development environments should generally run with less powerful configurations than production, and can be scaled up temporarily when needed
  - 3. Deallocated/scaled down when not in use
    - 1. Azure Automation Runbooks can be used to automatically spin up development environments during business hours and spin them down at the end of the day
  - 4. Have a fresh copy of production data

- 1. The most useful development environments will resemble production as closely as possible
- 2. Azure Automation Runbooks can be used to automate the process for refreshing development environments on-demand or on a schedule
- 5. Enforcing HTTPS
  - 1. Even development environments should be configured for HTTPS
    - 1. Using an OS-level tool such as <u>Certify the Web</u> or <u>Win-acme</u> in development provides flexibility over the ACME plugin for Rock

#### Orchestration and Automation

#### Orchestration and Automation Overview

1. Automating regular operations and defining environments as code provides repeatable, self-documenting processes for managing Azure resources that can increase operational efficiency

### **Automation Tooling in Azure**

#### 1. Azure Automation

- 1. Azure Automation accounts are a go-tool tool for automation and orchestration of Rock-related Azure resources
- Automation Runbooks enable execution of custom PowerShell scripts to manipulate Azure resources
  - 1. Runbooks have all of the Azure Management cmdlets available, and custom modules (such as the sqlserver module) can optionally be installed
  - 2. Runbooks can be executed on a schedule or on-demand
- 3. Automation accounts offer a free tier; 500 minutes of runtime per-month are provided for free

### 2. Azure Functions

- 1. In an automation context, Azure Functions are a more general option fur running arbitrary code more targeted at building APIs than Azure resource orchestration
- 2. Functions can be triggered on a schedule or with HTTP requests
- Azure Functions offer a great choice when implementing control of Azure resources within Rock
  - 1. Standard Rock functionality, such as Lava webrequest or workflow actions, can be used to trigger Azure functions
- 4. Azure Functions have a free tier available

#### 3. Azure Logic Apps

1. Azure Logic Apps offer a visual development experience similar to Rock workflows

Logic Apps can be used for some orchestration, and can be triggered by Azure Monitor Alert rules

#### 4. Managed Identity

 Leverage System Assigned Managed Identity to give Automation Accounts, Functions, and Logic Apps permissions to Azure resources

### **Automation and Orchestration Example Use Cases**

- 1. Scheduled SQL Scaling
  - 1. Scaling SQL for known periods of higher utilization is a common means of providing capacity when needed and cost savings when higher performance is unnecessary
  - 2. Prior to the release of the <u>Triumph plugin</u>, <u>Automation Runbooks</u> were commonly used to accomplish this
- 2. Automatic Scaling and allocation/deallocation for development environments
  - 1. Powering off dev environments and scaling down development databases outside of business hours can significantly reduce development environment cost
  - 2. Automation Runbooks can be used to schedule development environment availability in accordance with business hours
- 3. Automating development environment refreshes
  - 1. Manual development environment refreshes are tedious and error prone
  - 2. Automation Runbooks can be used to automate refreshes, taking this to a single-click operation that typically completes in around 15 minutes
- 4. Control/Orchestration of Azure Resources
  - 1. Function Apps can provide an API surface to control Azure resources from within Rock
  - 2. This can be a great way to allow users without Azure access to control the availability or trigger refreshes of development or sandbox environments

#### **Infrastructure as Code**

- 1. Most Rock environments have been deployed by pointing and clicking in the Azure portal
- 2. Infrastructure as Code allows defining and managing environments and resources as code instead of creating them manually
  - 1. Infrastructure as code is self-documenting (can read the code to determine how resources have been configured), and produces consistent results each time
- 3. Azure Bicep is typically the best tool for creating infrastructure as code templates for Azure
- 4. Bicep templates can be a great way to automate spinning up new development or sandbox environments